新祥旭考研官网欢迎您!

预约报名

长沙理工大学考研辅导班:2020年长沙理工大学数字与统计学院考研复试F1001实变函数科目考试大纲、参考书目

新祥旭岑老师-xxxedu666 / 2020-04-20

一、考试要求

主要考察考生是否掌握了实变函数的基本概念、基本理论和基本方法,包括集合的势与对等、Borel集类、Lebesgue测度、可测函数、可测函数的收敛、Lebesgue积分等的基本概念;集合序列的上下限集、可测集经交并差运算、Lebesgue积分等的计算方法,Cantor 集的构造、可测函数“几乎处处收敛”与“测度收敛”以及“近一致收敛”之间的关系,Lebesgue积分与广义Riemann积分的异同,一般可测函数积分的性质。Riemann 可积性与Lebesgue可积性之间的关系,Lebesgue积分的极限定理等;以及是否具备运用基本理论和基本方法,分析解决问题的能力。

二、考试内容

1、集合的基本运算;集合序列的上、下限集。集合的势的定义,势的性质,势的比较。常见集合的势及其基本性质;

2、n维空间中集合的内点、边界点、聚点、开集、闭集等概念,明确开集的构造.理解完备集的概念,特别要掌握Cantor 集;

3、外测度概念,外测度与体积的关系,可测集的定义及其性质,包括可测集经交、并、差运算后的可测性,可数个可测集的交集或并集的可测性、可数可加性以及可测集序列的极限之可测性。Borel集类;Lebesgue可测集的结构;

4、可测函数的概念,可测函数的特征性质,简单函数的有关性质。掌握“几乎处处收敛”与“测度收敛”以及“近一致收敛”的概念和它们之间的关系;

5、一般可测函数积分的定义,Lebesgue积分与广义Riemann积分的异同,一般可测函数积分的性质。Riemann 可积性与Lebesgue可积性之间的关系。Lebesgue积分的极限定理,包括Levi定理、Fatou引理、 Lebesue控制收敛定理及其应用,Riemann可积的充要条件。掌握L 积分的概念,理解L 积分和R 积分的关系.掌握L 积分的性质,对有关L 积分的三个极限定理及其应用。

三、题型

试卷满分为100分,其中:判断题占30%,计算分析题占20%,证明题占50%。

四、参考教材

1.《实变函数与泛函分析基础》(第三版).程其襄等.高等教育出版社,2010。

2.《实变函数与泛函分析概要》(第三版).郑维行、王声望主编.高等教育出版社,2005。

 

全方位权威辅导,考研复试效率高

面授一对一
在线一对一
魔鬼集训营
咨询课程 预约登记

以效果为导向    以录取为目标

填写信息获取考研一对一试听名额
姓名:
电话:
报考学校及专业:
北清考研定制 985考研定制 211考研定制 学硕考研定制 专硕考研定制 北京考研私塾
x